Заказать звонок
Звонки обрабатываются в течении часа, с 11.00 - 20.00 по московскому времени. Сб. - Вс. - выходной.
Ваше сообщение успешно отправлено! Благодарим за внимание к нашей компании!
 
Главная Основы фотоэлектричества

Основы фотоэлектричества

Мы можем использовать энергию солнца для разных целей. Одна из них - это выработка электрической энергии. При использовании солнечных батарей энергия солнца напрямую преобразуется в электрическую. Этот процесс называется фотоэлектрический эффект.
Использование солнечного электричества имеет много преимуществ. Это чистый, тихий и надежный источник энергии. Впервые фотоэлектрические батареи были использованы в космосе на спутниках.
Сегодня солнечное электричество широко используется. В удаленных районах, где нет централизованного электроснабжения, солнечные батареи используются для электроснабжения отдельных домов, для подъема воды и охлаждения лекарств. Эти системы зачастую используют аккумуляторные батареи для хранения выработанной днем электроэнергии. Кроме того, калькуляторы, телекоммуникационные системы, буи и т.д. работают от солнечного электричества.
Другая область применения - это электроснабжение домов, офисов и других зданий или генерация электричества для сетей централизованного электроснабжения.
Солнечные фотоэлектрические установки могут быть следующих основных типов:
Автономные
В случае если нет подключения к сети, солнечные модули генерируют электричество для целей освещения, питания телевизора, радио, насоса, холодильника или ручного инструмента. Обычно, для хранения энергии используются аккумуляторные батареи.
Соединенные с сетью
если объект подключен к сети централизованного электроснабжения, солнечные батареи могут использоваться для генерации собственного электричества. Избыток электрической энергии обычно продается электросетям.
Резервные системы фотоэлектрическая системы подключается к сетям плохого качества. В случае отключения сети или недостаточного качества сетевого напряжения, для покрытия нагрузки используется солнечная система
Фотоэлектрический эффект.
Для генерации электричества от солнца вам нужен солнечный модуль, который состоит из одного или многих солнечных фотоэлектрических элементов. Когда на солнечный элемент падает солнечных свет, материал солнечного элемента поглощает часть солечного света (фотоны). Каждый фотон имеет малое количество энергии. Когда фотон поглощается, он инициирует процесс освобождения электрона в солнечном элементе. Вследствие того, что обе стороны фотоэлектрического элемента имеют токоотводы, в цепи возникает ток когда фотон поглощается. Солнечный элемент генерирует электричество, которое может быть использовано сразу или сохранено в аккумуляторной батарее.

1.свет (фотоны)
4.слой p-n перехода
2.фронтальный контакт
5.позитивный слой
3.негативный слой
6.задний контакт
Пока солнечный элемент освещается, процесс образования свободных электронов продолжается и генерируется электричество. Материалы, из которых делается элемент - это полупроводники с особыми свойствами.
Солнечные модули могут генерировать электричество в течение 20 и более лет. Износ происходит в основном от воздействия окружающей среды. Хорошо смонтированная солнечная батарея будет надежным, тихим и чистым источником энергии в течение многих лет.

Солнечные элементы - принципы работы.
Солнечные элементы (СЭ) изготавливаются из материалов, которые напрямую преобразуют солнечный свет в электричество. Большая часть из коммерчески выпускаемых в настоящее время СЭ изготавливается из кремния (химический символ Si). Кремний это полупроводник. Он широко распространен на земле в виде песка, который является диоксидом кремния (SiO2), также известного под именем "кварцит". Другая область применения кремния - электроника, где кремний используется для производства полупроводниковых приборов и микросхем.
СЭ может быть следующих типов: монокристаллический, поликристаллический и аморфный. Различие между этими формами в том, как оргаризованы атомы кремния в кристалле. Различные СЭ имеют разный КПД преобразования энергии света. Моно- и поликристаллические элементы имеют почти одинаковый КПД, который выше, чем у СЭ, изготовленных из аморного кремния.
Прежде всего , в СЭ имеется задний контакт и 2 слоя кремния разной проводимости. Сверху имеется сетка из металлических контактов и антибликовое просветляющее покрытие, которое дает СЭ характерный синий оттенок.
В последние годы разработаны новые типы материалов для СЭ. Например, тонкопленочные СЭ из медь-индий-диселенида и из CdTe (теллурид кадмия). Эти СЭ в последнее время также коммерчески используются.
КПД солнечных элементов:
монокристаллические: 12-15 %
поликристаллические: 11-14 %
аморфные: 6-7 %
теллурид кадмия: 7-8 %
Пиковый ватт
СЭ производит электричество когда освещается светом. В зависимости от интенсивности света (измеряемой в Вт/м2), солнечный элемент производит больше или меньше электричества: яркий солнечный свет более предпочтителен, чем тень, и тень более предпочтительна, чем электрический свет. Для сравнения СЭ и модулей необходимо знать так называемую номинальную мощность элемента или модуля. Номинальная мощность, выращенная в ваттах пиковой мощности Wp, это мера того, сколько электроэнергии может произвести фотоэлектрический модули при оптимальных условиях.
Для определения и сравнения номинальной мощности солнечных панелей, выходная мощность измеряется при стандартных тестовых условиях (СТУ). Эти условия предполагают:
- освещенность 1000 Вт/м2
- солнечный спектр AM 1.5 (он определяет тип и цвет света)
- температура элемента 25 °C (это важно, так как эффективность СЭ падает при повышении его температуры).

Пример:
Кристаллический кремниевый СЭ с размерами 10 x 10 см имеет пиковую мощность примерно 1,5 Wp. Большинство панелей с площадью 1 квадратный метр имеют номинальную мощность около 100 Втпик (уточнение: если они сделаны из кристаллических кремниевых элементов).
 

Фотоэлектрические модули.
Солнечные панели состоят из солнечных элементов. Так как один солнечный элемент не производит достаточного количества электроэнергии для большинства применений, солнечные элементы собираются в солнечных модулях для того, чтобы производить больше электричества.


Солнечные панели (также называемые фотоэлектрические или солнечные модули) производятся многих типов и размеров. Наиболее типичные - это кремниевые фотоэлектрические модули мощностью 40-160 Wp (пиковый ватт, т.е. мощностью максимум в 40-160 Вт при ярком солнце). Такой солнечный модуль имеет размер от 0,4 до 1,6 м2. Однако, широкий типоразмерный ряд солнечных модулей доступен в продаже. Солнечные панели (PV panels) могут соединяться между собой солнечные батареи (arrays) для того, чтобы получить большую мощность (например, 2 модуля по 50 Wp, соединенных вместе, эквивалентны модулю мощностью 100 Wp).
КПД доступных в продаже модулей варьируется в пределах 5-15%. Это значит, что 5-15% от количества энергии, падающей на солнечный элемент, будет трансформировано в электричество. Исследовательские лаборатории во всем мире разрабатывают новые материалы для СЭ с более высоким КПД (до 30%). Стоимость производства также очень важна. Некоторые новые технологии (такие как, например, тонкопленочные), позволяют производить СЭ в больших масштабах, что значительно снизит стоимость элементов и модулей

 
Солнечные модули установленные на покатой крыше

Монокристаллический солнечный элемент


Сколько прослужат солнечные батареи?

Солнечные батареи были испытаны в полевых условиях на многих установках. Практика показала, что срок службы солнечных батарей превышает 20 лет. Фотоэлектрические станции, работающие в Европе и США около 25 лет, показали снижение мощности модулей примерно на 10%. Таким образом, можно говорить о реальном сроке службы солнечных монокристаллических модулей 30 и более лет. Поликристаллические модули обычно работают 20 и более лет. Модули из аморфного кремния (тонкопленочные, или гибкие) имеют срок службы от 7 (первое поколение тонкопленочных технологий) до 20 (второе поколение тонкопленочных технологий) лет. Более того, тонкопленочные модули обычно теряют от 10 до 40% мощности в первые 2 года эксплуатации. Поэтому, около 90% рынка фотоэлектрических модулей в настоящее время составляют кристаллические кремниевые модули.
Другие компоненты системы имеют различные сроки службы: аккумуляторные батареи имеют срок службы от 2 до 15 лет, а силовая электроника - от 5 до 20 лет.


Электрические характеристики солнечной батареи: вольт-амперная характеристика.

Солнечный модуль может работать при любой комбинации напряжения и тока, расположенным на его вольт-амперной характеристике (ВАХ). Однако в реальности модуль работает в одной точке в данное время. Эта точка выбирается не модулем, а электрическими характеристиками цепи, к которой данный модуль (или солнечная батарея) подключен.

Важные точки вольт-амперной характеристики, которые характеризуют солнечный модуль.


Напряжение, при котором ток равен 0, называется напряжением холостого хода (Voc). С другой стороны, ток, при котором напряжение равно 0, называется током короткого замыкания (Isc). В этих крайних точках ВАХ мощность модуля равна 0. На практике, система работает при комбинации тока и напряжения, когда вырабатывается достаточная мощность. Лучше сочетание называется точкой максимальной мощности (ТММ, или MPP). Соответствующие напряжение и ток обозначаются как Vp (номинальное напряжение) и Ip (номинальный ток). Именно для этой точки определяются номинальная мощность и КПД солнечного модуля.

Типичная информация на шильдике солнечного модуля.

Можно найти все эти параметры - (Voc, Isc, MPP, Vp, Ip) - на шильдике или прилагаемых к модулю характеристиках (заметьте, что Vp и Ip также называются номинальными значениями. Однако не ожидайте получить номинальную мощность от вашей солнечной батареи - почти невозможно, чтобы собранная система работала все время в точке максимальной мощности. Кроме изменений освещенности, на вырабатываемую мощность влияет температура солнечной батареи - чем выше температура солнечной батареи, тем ниже ее мощность.
 

Фотоэлектрические системы
Для того, чтобы фотоэлектрические модули были надежным источником электроэнергии, необходимы дополнительные элементы в системе: кабели, поддерживающая структура и, в зависимости от типа системы (соединенная с сетью, автономная или резервная), еще и электронный инвертор и контроллер заряда с аккумуляторной батареей. Такая система в целом называется солнечной фотоэлектрической системой, или солнечной станцией.
Есть три основных типа солнечных фотоэлектрических систем:
Автономные системы, обычно применяемые для электроснабжения отдельных домов
Соединенные с сетью системы
Резервные системы


Автономные фотоэлектрические системы.

Автономные фотоэлектрические системы используются там, где нет сетей централизованного электроснабжения. Для обепечения энергией в темное время суток или в периоды без яркого солнечного света необходима аккумуляторная батарея. АФС часто используются для электроснабжения отдельных домов. Малые системы позволяют питать базовую нагрузку (освещение и иногда телевизор или радио). Более мощные системы могут также питать водяной насос, радиостанцию, холодильник, электроинструмент и т.п. Система состоит из солнечной панели, контроллера, аккумуляторной батареи, кабелей, электрической нагрузки и поддерживающей структуры.

1.солнечные панели
3.АБ
2.контроллер
4.нагрузка
 

Конфигурация автономной фотоэлектрической системы.

Хотя умелый человек может сделать большую часть работы по утановке системы, электрические соединения должны быть сделаны квалифицированным персоналом.


Соединенные с сетью солнечные фотоэлектрические системы.

Когда есть сеть централизованного электроснабжения, но есть желание иметь электроэнергию от чистого источника (солнца), солнечные панели могут быть соединены с сетью. При условии подключения достаточного количества фотоэлектрических модулей, определенная часть нагрузки в доме может питаться от солнечного электричества. Соединенные с сетью фотоэлектрические системы обычно состоят из одного или многих модулей, инвертора, кабелей, поддерживающей структуры и электрической нагрузки.
Конфигурация соединенной с сетью фотоэлектрической системыИнвертор используется для соединения фотоэлектрических панелей с сетью. Существуют также так называемые AC-модули, в которых инвертор встроен на задней части модуля. Солнечные панели могут быть установлены на крыше здания под оптимальным углом наглона с помощью поддерживающей структуры или алюминиевой рамы. Простые системы с AC-модулями и заводскими поддерживающими структурами выпускаются все в более крупных масштабах.
Пример соединенной с сетью системы

 

1.солнечные панели
3.сеть
2.инвертор
4.нагрузка
 

Резервные системы

Резервные солнечные системы используются там, где есть соединение с сетью централизованного электроснабжения, но сеть ненадежна. Резервные системы могут использоваться для электроснабжения в периоды, когда нет напряжения в сети. Малые резервные солнечные системы электроснабжения наиболее важной нагрузки - освещение, компьютер и средства связи (телефон, радио, факс и т.п.). Более крупные системы могут также снабжать энергией и холодильник во время отключения сети. Чем больше мощность необходимая для питания ответственной нагрузки, и чем дольше периоды отключения сети, тем большая мощность фотоэлектрической системы необходима.
Хотя умелый человек может сделать большую часть работы по утановке системы, электрические соединения должны быть сделаны квалифицированным персоналом.
Конфигурация резервной фотоэлектрической системы

 

1.солнечные панели
4.сеть
2.инвертор
5.нагрузка
3.батарея
 
Система состоит из фотоэлектрических модулей, контроллера, аккумуляторной батареи, кабелей, инвертора, нагрузки и поддерживающей структуры.


   

Контроллеры заряда-разряда.
Контроллеры заряда используются в автономных фотоэлектрических системах для защиты аккумуляторных батарей (АБ) от глубокого разряда (когда есть перерасход энергии) или перезаряда (когда батарея заряжена, а солнечная панель вырабатывает избыток электричества).


Использование контроллеров заряда настоятельно рекомендуется. Он отключает нагрузку, когда аккумулятор недопустимо разряжен. Обычно фотоэлектрические солнечные комплекты снабжаются контроллером заряда.
Наблюдайте за вашим контроллером заряда для определения степени заряженности АБ; обычно на контроллере есть красный индикатор, который загорается когда АБ разряжена, и зеленый индикатор, который загорается, когда АБ заряжена. Старайтесь, чтобы зеленый индикатор горел как можно чаще. Это повысит срок службы аккумуляторной батареи.
Никогда на подключайте нагрузку напрямую к АБ минуя контроллер заряда для того, чтобы получить "последнюю порцию" энергии от батареи. Этим вы можете вывести вашу АБ из строя.


Поддерживающая конструкция.
Важной частью солнечной фотоэлектрической системы является поддерживающая контструкция для солнечных панелей. Поддерживающая конструкция обеспечивает правильный угол наклона панелей, а также необходимую жесткость конструкции. Комбинация поддерживающей конструкции с солнечными модулями должна выдерживать порывы ветра и другие воздействия окружающей среды.
Имеется большое разнообразие конструкций - от самодельных до промышленно изготавливаемых для больших фотоэлектрических систем. Поддерживающая конструкция может быть изготовлена из металла или синтетического материала.
Есть несколько типов поддерживающих конструкций в зависимости от того, где устанавливается фотоэлектрическая система. Для соединенных с сетью систем это может быть плоская или с малым наклоном крышная конструкция, или конструкция для фасада здания.
Соединенные с сетью системы также могут быть элементом конструкции здания (интегрированные солнечные системы). Для таких применений разрабатываются и изготавливаются специальные конструкции.
Интеграция со зданием стала важным аспектом для соединенных с сетью солнечных фотоэлектрических систем. Для уменьшения стоимости системы интеграция в здание может иметь большое значение. Более того, интеграция в здание может быть отличным способом улучшить архитектуру здания и показать, что элементы конструкции здания также могут выполнять функцию генерации электричества

 

Ориентация солнечных панелей.
Солнечный свет проходит свой путь от Солнца до Земли по прямой линии. Когда он достигает атмосферы, часть свет а преломляется, а часть достигает земли по прямой линии. Другая часть света поглощается амтмосферой. Преломленный свет - это то, что обычно называется диффузной радиацией, или рассеянным светом. Та чать солнечного света, которя достигает поверхности земли без рассеяния или поглощения - это прямая радиация. Прямая радиация - наиболее интенсивная.
Солнечные модули производят электричество даже когда нет прямого солнечного света. Поэтому, даже при облачной погоде фотоэлектрическая система будет производить электричество. Однако, наилучшие условия для генерации электроэнергии будут при ярком солнце и при ориентации панелей перпендикулярно солнечному свету. Для местностей северного полушария панели должны быть ориентированы на юг, для стран южного полушария - на север.
На практике, солнечные панели должны быть ориентированы под определенным углом к горизонтальной поверхности. Около экватора солнечные панели должны располагаться под очень маленьким углом (почти горизонтально), для того, чтобы дождь смывал пыль и грязь с фотоэлектрических модулей.
Небольшие отклонения от этой ориентации не играют существенной роли, потому что в течение дня солнце двигается по небу с вотока на запад.

1.прямая
2.поглощение
3.отражение
4.непрямая
Только малая доля солнечного излучения достигает поверхности земли.

Пример.
Доля производства энергии фотоэлектрической системой при наклоне 45 градусов, для широты местности 52 градуса северной широты.
запад юго-запад юг юго-восток восток
78% 94% 97% 94% 78%
Выработка максимальна (100%) когда панели расположены под углом 36 градусов и ориентированы на юг. Как видно из таблицы, разница между направлениями на юг, юго-восток и юго-запад незначительна.
 

Угол наклона солнечных батарей.
Солнце двигается по небу с вотока на запад. Солнечные панели наиболее эффективно работают, когда они направлены на солнце и их поверхность перпендикулярна солнечным лучам. Солнечные панели обычно располагаются на крыше или поддерживающей конструкции в фиксированном положении и не могут следить за положением солнца в течение дня. Поэтому, обычно солнечные панели не находятся под оптимальным углом (90 градусов) в течение всего дня. Угол между горизонтальной плоскостью и солнечной панелью обычно называют углом наклона.
Вследствие движения Земли вокруг Солнца, имеют место также сезонные вариации. Зимой солнце не достигает того же угла, как летом. В идеале, солнечные панели дожны располагаться летом более горизонтально, чем зимой. Поэтому угол наклона для работы летом выбирается меньше, чем для работы зимой. Если нет возможности менять угол наклона дважды в год, то панели должны располагаться по оптимальным углом, значение которого лежит где-то посередине междну оптимальными углами для лета и зимы. Для каждой широты есть свой оптимальный угол наклона панелей. Только для местностей около экватора солнечные панели должны располагаться горизонтально.
Обычно принимается для весны и осени оптимальный угол наклона равным значению широты местности. Для зимы к этому значению прибавляется 10-15 градусов, а летом от этого значения отнимается 10-15 градусов. Поэтому обычно рекомендуется менять дважды в год угол наклона с "летнего" на "зимний". Если такой возможности нет, то угол наклона выбирается примерно равным широте местности.
1.солнце зимой
2.солнце летом

Оптимальный угол наклона зимой и летом

Небольшие отклонения до 5 градусов от этого оптимума оказывают незначительный эффект на производительность модулей. Различие в погодных условиях более влияет на выработку электричества. Для автономных систем оптимальный угол наклона зависит от месячного графика нагрузки, т.е. если в данном месяце потребляется больше энергии, то угол наклона нужно выбирать оптимальным именно для этого месяца.
Пример.
Оптимальный угол наклона для широты 52 градуса (северной широты) для соединенных с сетью систем составляет 36 градусов. Однако, для автономной системы с примерно равной потребностью в энергии в течение года, оптимальный угол наклона будет составлять около 65-70 градусов.